1.
$$Al(NO_3)_3 + H_2O ----> Al(H_2O)_6^{3+} + 3NO_3^{3-}$$

Then:

$$Al(H_2O)_6^{3+} + H_2O \iff Al(H_2O)_5(OH)^{2+} + H_3O^+$$

which can hydrolyze further into:

 $Al(H_2O)_4(OH)_2^+$

and further into:

Al(H₂O)₃(OH)₃ which is neutral and then a precipitate.

Now adding additional OH causes further hydrolyzation into:

 $Al(H_2O)_2(OH)_4$ which is soluble.

2. The Colour at the transition point equals that point where Ka of the indicator is the $[H_3O]$ in the solution.

Then: Ka=
$$[H_3O] = 5.2 \times 10^{-4}$$

The pH = pKa = 3.28

3. Ka = Ka1 x Ka2 x Ka3
$$(7.5 \times 10^{-3}) (6.2 \times 10^{-8}) (2.2 \times 10^{-13}) = 1.0 \times 10^{-22}$$

4. $Ca(OH)_2 + H_2O \iff Ca^{2+} + 2OH^{-}$ a pH of 12.32 => $[OH^{-}] = 2.09x \ 10^{-2}$ since 2OH- are produced for each Ca^{2+} , then $[Ca^{2+}] = 1.05 \ x \ 10^{-2} \ M$

Ksp =
$$[Ca^{2+}][OH^-]^2$$

= $(1.05x 10^{-2})(2.09x 10^{-2})^2$
= $4.6x 10^{-6}$

5. Moles $OH^- = (42.55 \text{mL})(0.50 \text{M}) = 21.28 \text{ m mol}$ at the equivalence point, mol $H^+ = \text{mol OH}^-$

moles $H^+ = 21.28 \text{ mmol}$

Since the acid in monoprotic, then moles acid = 21.28 mmol

molecular mass = mass/mol = $2.6g/21.28 \text{ mmol} = 1.2 \text{ x } 10^2 \text{g/mol}$

6.(a)
$$HSO_3^ Ka = 6.2 \times 10^{-8} (1.0 \times 10^{-7})$$

 $H3PO4$ $Ka = 7.1 \times 10^{-3} (7.5 \times 10^{-3})$

Since 7.1 x10⁻³ (7.5 x10⁻³) > 6.2 x 10⁻⁸ (1.0x 10⁻⁷), H3PO4 is stronger acid and equil shifts to favor reactants.

(b) $HCO_3^ Ka = 4.7 \times 10^{-11} (5.6 \times 10^{-11})$ H_2O_2 $Ka = 2.4 \times 10^{-12}$

Since 4.7 x 10^{-11} (5.6x 10^{-11}) \geq 2.4 x 10^{-12} , HCO $_3$ in the stronger acid and products are favored

(c)
$$HSO_3^ Ka = 6.2 \times 10^{-8} (1.0 \times 10^{-7})$$

 HPO_4^{2-} $Ka = 4.4 \times 10^{-13} (2.2 \times 10^{-13})$
Then HSO_3^- in the acid
 $HSO_3^- + HPO_4^{2-} < \longrightarrow H_2PO_4^- + SO_3^{2-}$

 H_2PO_4 Ka = 6.3 x 10^{-8} (6.2 x 10^{-8})

Since 6.3 $\times 10^{-8}$ (6.2 $\times 10^{-3}$) in slightly greater than 6.2 $\times 10^{-8}$ (1.0 $\times 10^{-7}$) then the products are favored.

(d)
$$CH_3COO^- + H_2PO_4^- < --> CH_3COOH + HPO_4^{2-}$$

 $H2PO4 - Ka = 6.3 \times 10^{-8} (6.2 \times 10^{-8})$
 $CH3OOH \quad Ka = 1.8 \times 10^{-5}$
Since $1.8 \times 10^{-5} > 6.3 \times 10^{-8}$, then the reactants are favored.

7.a) HC Strongest acid
H₂A
HB
HA

HD weakest acid

b) The conjugate of the weakest acid is the strongest base. The strongest base is D

c) NaD +
$$H_2O$$
 \longrightarrow Na⁺_(aq) + D^- _(aq)
Na+ do not hydrolyze.
 D^- + H_2O < \longrightarrow HD + OH