\qquad
\qquad

Section 3.2 Extra Practice

1. Which functions are quadratic?

Explain why.
a) $y=x^{2}-15 x$
b) $f(x)=(x+4)(x-4)$
c) $h(t)=-4.9 t^{2}+400$
d) $V(w)=w(w+3)(w-1)$
2. For each graph, identify the following:

- the coordinates of the vertex
- the equation of the axis of symmetry
- the x-intercepts and y-intercept
- the direction of opening
- the maximum or minimum value
- the domain and range
a)

b)

3. Write each quadratic function in standard form, $y=a x^{2}+b x+c$.
a) $y=(x+7)^{2}-10$
b) $f(x)=(2 x+5)(6-3 x)$
c) $h(t)=-9(t+1)^{2}+50$
d) $y=(4 x+3)(2 x+5)$
4. Sketch the graph of each function. For each graph, determine

- the coordinates of the vertex
- the equation of the axis of symmetry
- the x-intercepts and y-intercept
- the direction of opening
- the maximum or minimum value
- the domain and range
a) $y=x^{2}-8 x+15$
b) $f(x)=-(x+1)(x+7)$
c) $y=x^{2}-4 x$
d) $h(t)=10 t-5 t^{2}$

5. A farmer has 200 m of fencing material to enclose a rectangular field adjacent to a river. No fencing is required along the river.

a) What does w represent in the diagram? Why is the length equal to $200-2 w$?
b) Write a function that can be used to represent the area of the field.
c) Sketch the graph of the function.
d) Determine the maximum area of the field.
e) Determine the dimensions of the region that give the maximum area.
6. A projectile is fired out of a cannon at $105 \mathrm{~m} / \mathrm{s}$ from a $100-\mathrm{m}$ cliff. The function that models the height, h, of the trajectory in relation to time, t, is $h(t)=-5 t^{2}+105 t+100$.
a) Sketch the graph of the function.
b) Determine the h-intercept of the function. What does the h-intercept represent?
c) Determine the t-intercept of the function. What does the t-intercept represent?
d) Determine the maximum height of the projectile and when it occurs.
