Review #4 – Acids

- 1. A 0.0150 M solution of a monoprotic acid has a pH of 2.78. Calculate its K_a.
- 2. A 1.00 g impure sample of Ca(OH)₂ was added to a flask together with 25 mL of water. In a titration, 28.65 mL of 0.600 M HCl was required to reach the endpoint. Calculate the % purity of the sample.
- 3. How many moles of potassium hydrogen sulphide, KHS, must be dissolved in 300 mL of water in order to produce a pH of 10.40?
- 4. The oxide ion, O²⁻, is a strong base in aqueous solution. Write the reaction equation showing the oxide ion acting as a base and calculate the pH of a 3.0x10⁻³ M solution of barium oxide, BaO.
- 5. What is the resulting pH when 75.0 mL of 0.400 M KOH is added to 60.0 mL of 0.240 M H_2SO_4 ?
- 6. Grapes grown in B.C. frequently produce wine that is too acidic. A common method of reducing acidity in wine is to add CaCO_{3(s)}. Explain why this method works using appropriate equations.
- 7. A 2.0 M solution of an unknown monoprotic acid has a pH of 1.43. Use the K_a table to identify the acid.
- 8. HCl gas is bubbled through 2.00 L of an HCl solution. How many moles of HCl gas would have to dissolve to lower the pH from 3.00 to 2.00?
- 9. A 0.60 M base solution, NaX_(aq) is found to have a [OH $^{-}$] of 0.12 M. Determine the value of K_b for the base.
- 10. Discuss, in terms of hydrolysis, the use of sodium acetate, NaCH₃COO, to produce the vinegar flavour on some potato chips.
- 11. Calculate the [H_3O^+] in 0.25 M NH₄NO₃.

1. HA + H₂O ---> A⁻ + H₃O⁺

$$K_a = [A^-][H_3O^+]/[HA]$$

$$[H_3O^+] = \text{antilog } -2.78 = 1.66 \times 10^{-3} \text{ M}$$

$$[A^-] = 1.66 \times 10^{-3} \text{ M}$$

$$[HA] = 0.0150 \text{M} - 1.66 \times 10^{-3} \text{ M} = 0.01334$$
 $Ka = (1.66 \times 10^{-3})^2 / (0.0133)$

$$= 2.1 \times 10^{-4}$$

- 2. $Ca(OH)_2 < ----> Ca^{2+} + 2OH^ OH^- + H^+ < ----> H_2O$ mols of $H^+ = 0.600M \times 28.65mL = 17.19$ mmols mols of $OH^- = 17.19$ mmols mols of $Ca(OH)_2 = 17.19$ mmols $OH^- \times 1$ mol $Ca(OH)_2/2$ mol $OH^- = 8.595$ mmols $Ca(OH)_2 = 4.01 + 2(16.0 + 1.0) = 74.1$ g/mol 8.595×10^{-3} mol $\times 74.1$ g/mol = 0.637g % purity = 0.637g/ 1.00g = 63.7%
- 3. $HS^{-} + H_{2}O < ----> H_{2}S + OH^{-}$ $K_{b} = [OH^{-}][H_{2}S]/[HS^{-}]$ $= 1.00 \times 10^{-14}/ 9.1 \times 10^{-8}$ $= 1.10 \times 10^{-7}$ $[OH^{-}] = antilog (-3.60) = 2.51 \times 10^{-4}M$ Let $[HS^{-}] = x 2.51 \times 10^{-4}$ $(2.51 \times 10^{-4})^{2} / (x 2.51 \times 10^{-4}) = 1.10 \times 10^{-7}$ $\times 2.51 \times 10^{-4} = 0.574$ $\times = 0.574M$ mols of $HS^{-} = 0.574M \times 0.300L = 0.17$ mol
- 4. $O^{-2} + H_2O --- > 2OH^ [O^{-2}] = 3.0 \times 10^{-3} M$ $[OH^-] = 3.0 \times 10^{-3} M \times 2 = 6.0 \times 10^{-3} M$ $pOH = -(\log 6.0 \times 10^{-3}) = 2.22$ pH = 14 - 2.22 = 11.78
- mols of $OH^- = 0.400M \times 75.0mL = 30.0mmol$ mols of $H^+ = 0.240 \times 2 \times 60.0mL = 28.8 \text{ mmol}$ $OH^- \text{ in excess} : 30.0 - 28.8 = 1.20 \text{ mmol}$ $[OH^-] = 1.2 \text{ mmol}/ (75.0 + 60.0) = 8.9 \times 10^{-3} \text{M}$

$$pOH = 2.05$$
 $pH = 11.95$