\qquad
\qquad

Section 1.5 Extra Practice

1. State whether each geometric series is convergent or divergent.
a) $80+20+5+\frac{5}{4}+\ldots$
b) $-30+20-\frac{40}{3}+\frac{80}{9}-\ldots$
c) $t_{1}=-5, r=\frac{1}{2}$
d) $t_{1}=\frac{1}{3}, r=-2$
2. Determine the sum of each geometric series, if it exists.
a) $t_{1}=-4, r=\frac{4}{5}$
b) $t_{1}=10, r=\frac{-2}{3}$
c) $10+10 \sqrt{3}+30+30 \sqrt{3}+\ldots$
d) $\frac{5}{3}-\frac{5}{9}+\frac{5}{27}-\frac{5}{81}+\ldots$
е) $8+8\left(\frac{2}{3}\right)+8\left(\frac{2}{3}\right)^{2}+8\left(\frac{2}{3}\right)^{3}+\ldots$
f) $-2-2\left(\frac{-3}{4}\right)-2\left(\frac{-3}{4}\right)^{2}-2\left(\frac{-3}{4}\right)^{3}-\ldots$
3. Express each of the following as an infinite geometric series. Determine the sum of the series.
a) $0 . \overline{63}$
b) $7.4 \overline{5}$
c) $0.123 \overline{456}$
4. The general term of an infinite geometric series is $t_{n}=7\left(\frac{1}{3}\right)^{n-1}$. Determine the sum of the series, if it exists.
5. The sum of an infinite geometric series is $\frac{10}{3}$ and the first term is 5 . Determine the common ratio.
6. The sum of an infinite geometric series is $\frac{3 \pi}{2}$ and the common ratio is $\frac{1}{2}$. Determine the first term.
7. A ball is dropped from a height of 2.0 m onto a floor. On each bounce the ball rises to 75% of the height from which it fell. Calculate the total distance the ball travels before coming to rest.
8. Determine the values of x such that the series $1+x+x^{2}+x^{3}+\ldots$ has a sum.
9. The sum of an infinite geometric series is three times the first term. Determine the common ratio.
10. A new oil well produces $12000 \mathrm{~m}^{3} /$ month of oil. Its production is known to be dropping by 2.5% each month.
a) What is the total production in the first year?
b) Determine the total production of the well.
