Chemistry 12 Rates of Reaction Worksheet #1

1. Consider:
$$N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}$$

If the rate of formation of NH₃ is 9.0 x 10⁻⁴ mol/s, then what is the rate of consumption 4.5 × 10 4 mol/s

Suggest 2 specific changes that would increase the rate of rusting of a piece of iron. 2. increase temperature, increase surface crea of iron, increase O2 concentration, add

3.

concentration of reactants temperature of reactants

surface area of reactants - not between 2 gence.

Which factor(s) affect the rate of a chemical reaction between 2 gases?

4. Consider:
$$2NO_{2(g)} -> 2NO_{(g)} + O_{2(g)}$$

What is the rate of formation of O₂ if, under certain conditions, the rate of decomposition of NO₂ is 3.2 x 10⁻³ mol/sec? 1.6 × 10⁻³ mol/sec?

Which reaction rate(s) will increase if the surface area is increased?

6. Consider: frequency of successful collisions

П volume of reaction vessel

Ш pressure of the system

IV mass of system

Which condition(s) must increase to increase the rate of the reaction?

7. Consider: pressure per mole

energy consumed per mole volume of gas per unit time moles formed per litre of solution

Which is(are) an expression of the rate of a chemical reaction?

Give an example of a heterogeneous reaction and list four different factors that affect the 8. rate of this reaction.

1. Temperature

2. Concentration of HCI

2 surface area of May

9. Consider the reaction:

At certain conditions, 0.15 mol CO₂ is produced in 2.0 minutes. What is the rate of consumption C₂H₄ of in g/s?

Old mel Co₂ is produced in 2.0 minutes. What is the rate of consumption C₂H₄ of in g/s?

Old mel Co₂ in the co₂ in the co₃ in the co₄ in 2.0 min.

10. Consider the following reaction:
$$0.075 \text{ mol} \times \frac{28.0}{1 \text{ mol}} = 2.1 \text{ g} \text{ mol} 120 \text{ s} = 0.018 \text{ g/s}$$

$$C_{12}H_{22}O_{11(s)} ----> 11 H_2O_{(g)} + 12C_{(s)}$$

The rate of decomposition of C₁₂H₂₂O₁₁₆ is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds? 0.75 mol/min is 0.75 mol/min. What mass of C is produced in 10.0 seconds?

11. The mass of a burning candle is monitored to determine the rate of combustion of paraffin. An accepted reaction for the combustion of paraffin is:

$$2C_{28}H_{58(s)} + 85O_{2(g)} \longrightarrow 58 H_2O_{(g)} + 56CO_{2(s)}$$

a) Calculate the average rate of consumption of paraffin in g/min for the time interval 12.0 to

24.0 minutes.
$$24.7 - 23.4g = 1.1/12.0$$
 minutes. $24.7 - 23.4g = 1.1/12.0$ minutes. $394.0g/m.e$ $= 0.092g/m.e$
b) Calculate to rate of CO_2 production in mol/min for the time interval 12.0 to 24.0 minutes. $0.092g = 1.1/12.0$ minutes. $0.092g = 1.1/12.0$ mol/minutes. $0.092g = 1.1/12.0$ mol/m

The following data is observed:

Company of the Compan

0.0	25,6
6.0	25.1
12.0	24.5
18.0	23.9
24.0	23.4
30.0	22.8

12. An Alka-seltzer tablet is added to water to produce carbon dioxide gas. The gas was collected using water displacement.

a) Calculate the average rate of reaction for the formation of CO₂ gas for the times:

The following data is recorded:

Time (x)	Volume of CO ₂ (mL)
0.0	, 0
10.0	3.0
20.0	20.0
30.0	33.5
40.0	43.0
50.0	43.0
60.0	43.0

b) Suggest a reason why the rate of reaction The table wer infact (whole) from 0-10 s from 0-10 seconds is slower than the rate from 10.0-20.0 seconds. a scower rate, whereas the table broke apart, increasing SA and thus increasing c) The rate of reaction is not constant during the entire interval from 10.0 s to 40.0 s. Describe the change in rate and explain a reason for the change.

Time interval	Rate
10.0 - 20.05	1.70 me/s
20.0-30.01	1.35 nels
30.0 -40.01	0.95 ml/1

The rate decreases from 10.0-40.05.

The treatant of decreased as the tablet was consumed, resulting in decreased collision frequency of thus decreased rate.