

Intermedictes:

H302 , HOI, OH, I,

- On the following diagram, clearly label the: 1.
 - activation energy for the forward reaction (a)
 - heat of reaction (b)
 - energy of the activated complex in the rate determining step (c)

Progress of the reaction

2. The following series of steps describes a reaction mechanism for a chemical reaction:

step 1:
$$H_2O_2 + H^+ \longrightarrow H_3O_2^+$$
 fast
step 2: $H_3O_2^+ + I^- \longrightarrow H_2O + HOI$ slow
step 3: $HOI + I^- \longrightarrow OH^- + I_2^-$ fast
step 4: $OH^- + H^+ \longrightarrow H_2O$ fast
step 5: $I_2^- + I^- \longrightarrow I_3^-$ fast
 $H_2O_2 + 3I^- + 2H^+ \longrightarrow 2H_2O + I_3^-$

Write the equation for the overall reaction and identify all reaction intermediates. Increasing the concentration of which reactant will greatly increase the rate of the reaction? Explain. Increasing concentration of I - will increase the rate become

it is a reador to step 2, the slow or rate determining stop. 3. Describe two ways, other than the use of a catalyst, to increase the rate of the following reaction:

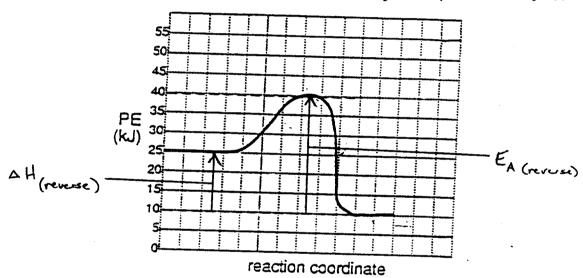
$$Zn_{(s)} \div 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} \div H_{2(q)}$$

any 2 of: 1) powder the solid zinc

- @ increase the concentration of HCI (cg)
- (3) treat the mixture

$$2Ce^{4+} + TI^{+} \longrightarrow 2Ce^{3+} + TI^{3+}$$

When a catalyst is added to the above reaction, the following three-step reaction mechanism takes place:


step 1:
$$Ce^{4+} + Mn^{2+} --- > Ce^{3+} + Mn^{3+}$$

step 2:
$$Ce^{4+} + Mn^{3+} \longrightarrow Ce^{3+} + Mn^{4+}$$

step 3:
$$Mn^{4+} + Tl^{+} \longrightarrow Tl^{3+} + Mn^{2+}$$

With reference to the above equation, use collision theory to explain why the catalyzed reaction mechanism is faster than the uncatalyzed reaction.

The catalyzed mechanism involves only 2 perticle collisions which will be faster 5. Consider the following diagram: then the uncertalyzed 3 perticle collision.

- (a) On the diagram, label the change in enthalpy and the activation energy for the reverse reaction.
- (b) Give the values for the energy of the activated complex and the AH for the forward reaction. Ep (activates complex) = 40 kJ AH(formal) = -15 kJ
- 6. Consider the following reaction:

$$Co_{(g)} + NO_{2(g)} \longrightarrow CO_{2(g)} + NO_{(g)}$$

Using collision theory, explain why the rate of the reaction decreases as the reaction proceeds.

7. Consider the following mechanism for an exothermic reaction:

step 1:
$$NO_{(g)} + NO_{(g)} --> N_2O_{4(g)}$$
 fast
step 2: $N_2O_{4(x)} + O_{2(x)} --> 2NO_{4(g)}$

step 2: $N_2O_{4(g)} + O_{2(g)} -> 2NO_{2(g)}$ slow

2 NO + O, \rightarrow 2 NO.

Draw a PE diagram to represent the above two step reaction mechanism and write the net equation to represent the overall reaction.

8. The uncatalyzed decomposition of methanoic acid, HCOOH, has a AH = 13 kJ and the activation energy = 88 kJ.

The reaction mechanism for the catalyzed decomposition of methanoic acid is:

step 1: HCOOH + H⁺ --- > HCOOH₂ + fast

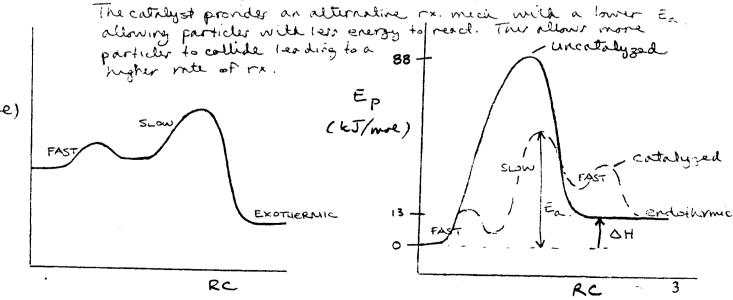
step 2: $HCOOH_2^+ ---> HCO^- + H_2O$ slow

step 3: $HCO^- \longrightarrow H^+ + CO$ fast

On a graph draw a PE diagram for the catalyzed decomposition of methanoic acid.

Label the AH and the activation energy for the reaction.

9. The following equations represent a proposed mechanism for the decomposition of ozone:


step 1: $C1 + O_3 ---> C1O + O_2$

step 2: $\frac{\text{ClO} + \text{O} \longrightarrow \text{Cl} + \text{O}_2}{\text{O}_3 + \text{O} \longrightarrow \text{2O}_2}$

Write the equation for the overall reaction.

Identify the catalyst. CQ

Explain how the catalyst increases the rate of this reaction.

Ep 5/moe)