Section 2.3 Extra Practice

Where necessary, express lengths to the nearest tenth of a unit and angle measures to the nearest degree.

1. Determine the length of AB in each triangle.

2. Determine the measure of the indicated angle.

- **3.** Sketch each triangle. Then, determine the indicated value.
 - a) In $\triangle ABC$, AB = 80 m, AC = 100 m, and $\angle B = 40^{\circ}$. Determine $\angle C$.
 - **b)** In \triangle PQR, PQ = 15.1 cm, \angle P = 25°, and \angle Q = 70°. Determine QR.

4. Solve each triangle by determining the unknown sides and angles.

- **5.** Sketch each triangle. Then, determine the unknown side and angles. If two solutions are possible, give both.
 - a) In $\triangle ABC$, AB = 15 m, BC = 5 m, and $\angle A = 20^{\circ}$.
 - **b)** In \triangle PQR, PQ = 12.5 cm, QR = 13.0 cm, and \angle P = 103°.
 - c) In \triangle DEF, DE = 8.0 cm, EF = 6.0 cm, and \angle D = 40°.
 - **d)** In \triangle RST, RS = 4.3 mm, ST = 4.0 mm, and \angle R = 65°.
- **6.** Determine the area of \triangle TUV, to the nearest square centimetre.

BLM 2-7