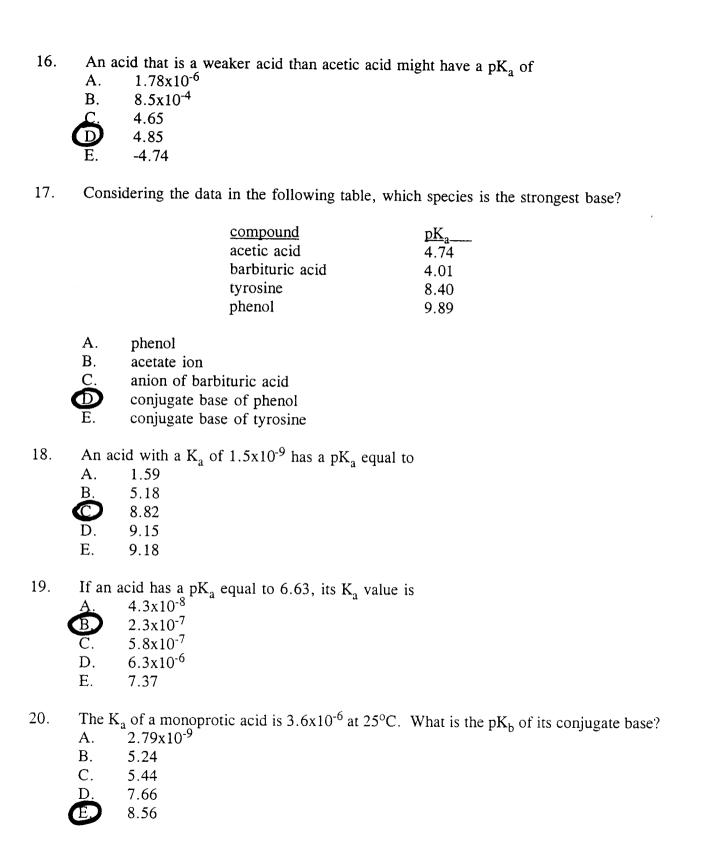
- 1. At 30° C, $K_{\rm w} = 3.0 \times 10^{-14}$. Therefore, a solution at 30 °C in which the [OH⁻] = 1.732×10^{-7} M is best described as
 - A. acidic
 - B. basic
 - neutral
 - D. amphoteric
 - E. amphiprotic
- 2. What is the pH of a neutral solution at 10° C when $k_w = 3.0x10^{-15}$?
 - A. 3.0
 - B. 7.0
 - **C**. 7.3
 - D. 12
 - E. 14.5
- 3. The equation: pH + pOH = 14.00 is true
 - A. for all solvents
 - B. at all temperatures
 - C. at 20°C
 - D at 25 °C
 - E. for all solvents and at all temperatures
- 4. A 0.03 M borax solution has a pH of about 9.2. Which statement about this solution is true?
 - $[H^+] = 6.3 \times 10^{-10} M$
 - B. $[H^+] = 1.6 \times 10^{-5} \text{ M}$
 - C. $[H^+] = 2.0 \times 10^{-2} M$
 - D. $[H^+] = 9.2 M$
 - E. the solution is basic
- 5. The concentration of hydroxide ion in an aqueous solution is $3.3x10^{-6}$ M. What is the pH of the solution?
 - A. $3.03x10^{-9}$
 - B. 3.3
 - <u>C</u>. 5.48
 - 8.52
 - E. -5.48
- 6. The pH of a soft drink is 5.67. What is the concentration of the OH⁻?
 - $A. 7x10^{-9} M$
 - B. 2.1x10⁻⁶ M
 - C. $6.7x10^{-5}$ M
 - D. 5.67 M
 - E. 8.33 M


- 7. A solution was made by dissolving 0.0788 g Ca(OH)₂, a strong base, in 100 mL water. The pH of this solution was
 - A. 1.67
 - B. 1.97
 - C. 9.33
 - D. 12.03
 - E. 12.03
- 8. The pH of a solution of hydrochloric acid was found to be 2.55. What was the concentration of the acid?
 - A. $3.6 \times 10^{-12} \text{ M}$
 - - C. $5.5 \times 10^{-2} \text{ M}$
 - D. 2.6 M
 - E. 11 M
- 9. Nitrous acid is a weak acid that ionizes in water according to the following equilibrium:

$$HNO_2 + H_2O < ---> H_3O^+ + NO_2^-$$

The expression for the acid ionization constant, $\boldsymbol{K}_{\!a}$, is

- A. $K_a = \frac{[H_3O^+][NO_2^-]}{[H_2O][HNO_2]}$
- - C. $K_a = \underline{[H^+][NO_2]}$
 - D. $K_a = \frac{[HNO_2]}{[H^+][NO_2]}$
 - E. $K_a = \underline{[H_2O][HNO_2]}$ $[H_3O^+][NO_2^-]$
- 10. The pH of a 0.10 M lactic acid solution at 25° C is 2.43. What is the value of K_a for this acid?
 - A B
- $1.3x10^{-4}$
- $1.4x10^{-4}$
- C. $3.7x10^{-3}$
- D. 7.4×10^{-3}
- E.
 - 0.24

- 11. The K_a of glycollic acid at 25° C is $1.5x10^{-4}$. Calculate the pH of a 0.14 M solution of this acid.
 - A. 1.06
 - B. 1.49
 - **©** 2.34
 - D. 2.96E. 4.68
- 12. The K_b of strychnine at 25° C is 1.8×10^{-6} . What is the pH of a 0.15 M solution of this base?
 - A. 3.28
 - B. 5.74
 - C. 8.26
 - D 10.72 E. 11.54
- 13. At 25° C, the pH of a 0.12 M solution of morphine, a base, is 10.64. What is the value of the K_b for morphine?
 - A. 4.6×10^{-21}
 - B. $2.3x10^{-8}$
 - C. 1.9x10⁻⁷
 - 1.6x10⁻⁶
 - E. 1.5x10⁻⁴
- 14. The cyanide ion, CN⁻, is a Bronsted base. In a dilute solution of this ion together with the sodium ion, which of the following relationships is true where K_b refers to the base ionization constant for the cyanide ion?
 - $(OH^-] = \underbrace{[CN^-]}_{[HCN]} \times K_b$
 - B. $[HCN] = \underbrace{[OH^-]}_{[CN^-]} \times K_b$
 - C. $K_b = \frac{[H_2O][CN^-]}{[HCN][OH^-]}$
 - D. $[CN^-] = \underbrace{[HCN]}_{[OH^-]} \times K_b$
 - E. $K_b = \frac{[HCN] [OH^-]}{[H_2O] [CN^-]}$
- 15. Calculate the % ionization of the acid in 0.075 M acetic acid solution at 25°C.
 - A. 0.018 %
 - B. 0.075 %
 - <u>C</u>. 0.12 %
 - D 1.6 %

